Elementary Particles

HOME | Best Web Host | Question of the Week | Archived Questions | More Archived NEC Questions | Still More Archived Questions | Still More Archived Questions-2 | Still More Archived Questions-3 | Articles | Electrical Deficiencies | More Electrical Deficiencies | Electricians Tools | Online computers | Cybercorner | Electrician's License | Electronics Tutorials | Electricians' worksaving ideas | Electronic Theorems | Satellite Dish | Digital Cameras and Equipment | HTML Color Chart | Electronic Acronyms | Electronic Definitions | Electrician's Soldering Tutorial | Photovoltaic Power | Wind Power | Fire Alarm Basics | More Fire Alarm Info | Working with MC and EMT | Electricians' Color Code | Wiring Commercial Garages | Managing Your Emergency Lights | Lighting Design | Industrial Wiring | Wiring Ethernet | Residential Wiring | Low Voltage Wiring | PLC Overview | Electrical Troubleshooting Techniques | Using Loop Impedance Meter | Ten Common Grounding Errors |NEC and Low-Voltage Wiring | Raceway Protection and NEC | Working with Metal Raceway | Inductance and Characteristic Impedance | Understanding Capacitance | History of the Ethernet | Twisting Data Conductors | NEC Article 800, Communications Circuits | NEC Article 810, Radio and Television Equipment | NEC Article 820, Community Antenna and Radio Distribution Equipment | NEC Article 830, Network-Powered Broadband | Troubleshooting Submersible Well Pumps | Wiring Healthcare Facilities | First Edition National Electrical Code 1897 | Books for Electricians | Links

It is a great pleasure to announce the publication by McGraw-Hill of my new NEC 2011 guidebook. Reader feedback will be appreciated --


Wilderness Light Photography: Custom, commercial, landscape, nature, weddings, portraits, stock images by Judith Howcroft -- wildernesslightstockphotos.com

Order Electricians' Books Online --

Electricians' Books

Order Satellite Dish Installation Tools Online --

Summit Source

Order Klein Electricians' Tools Online --

Klein Tools

Order Greenlee Electricians' Tools Online --

Order Ridgid Electricians' Tools Online --

Order Milwaukee Electricians' Tools Online --

Milwaukee 49-22-4085 17 Piece Deluxe Electricians' Hole Saw Kit

Milwaukee 49-22-4085 17 Piece Deluxe Electricians' Hole Saw Kit Since its founding in 1924, Milwaukee has focused on a single vision: to produce the best heavy-duty electric power tools and accessories available to professional user. Today, the Milwaukee name stands for the highest quality, durable and reliable professional tools money can buy. This deluxe 17 piece Electricians' Hole Saw Kit has the ultimate range of diameters available. The 12 diameters include: 5/8 inch, 3/4 inch, 7/8 inch, 1 inch, 1-1/8 inch, 1-1/4 inch, 1-3/8 inch, 1-1/2 inch, 1-3/4 inch, 2 inch, 2-1/2 inch, and 3 inch. The kit also includes arbor 49-56-7000 for hole saws up to 1-3/16 inch and arbor 49-56-7140 for hole saws 1-1/4 inch and larger. Additionally the kit has three pilot bits 49-56-8000 and an impact resistant plastic carrying case. The case is also sold separately as 48-55-0784. The hole saws in this kit are of the 6 teeth per inch design. Milwaukee 49-22-4085 17 Piece Deluxe Electricians' Hole Saw Kit Features: • Deluxe assortment of 12 hole saws, two arbors, and three pilot bits • Hole Saws: 5/8 in., 3/4 in., 7/8 in., 1 in., 1-1/8 in., 1-1/4 in., 1-3/8 in., 1-1/2 in., 1-3/4 in., 2 in., 2-1/2 in., 3 in.

What Is an Electron?

The electron is a subatomic particle carrying a negative electric charge. It has no known components or substructure. Therefore, the electron is generally believed to be an elementary particle. An electron has a mass that is approximately 1/1836 that of the proton. The intrinsic angular momentum (spin) of the electron is a half-integer value in units of 1, which means that it is a fermion. The antiparticle of the electron is called the positron. The positron is identical to the electron except that it carries electrical and other charges of the opposite sign. When an electron collides with a positron, both particles may either scatter off each other or be totally annihilated, producing a pair (or more) of gamma ray photons. Electrons, which belong to the first generation of the lepton particle family, participate in gravitational, electromagnetic and weak interactions. Electrons, like all matter, have quantum mechanical properties of both particles and waves, so they can collide with other particles and may aybe diffracted like light. However, this duality is best demonstrated in experiments with electrons, due to their tiny mass. Since an electron is a fermion, no two electrons can occupy the same quantum state, in accordance with the Pauli exclusion principle.

The concept of an indivisible amount of electric charge was theorized to explain the chemical properties of atoms, beginning in 1838 by British natural philosopher Richard Laming; the name electron was introduced for this charge in 1894 by Irish physicist George Johnstone Stoney. The electron was identified as a particle in 1897 by J. J. Thomson and his team of British physicists.

In many physical phenomena, such as electricity, magnetism, and thermal conductivity, electrons play an essential role. An electron in motion relative to an observer generates a magnetic field, and will be deflected by external magnetic fields. When an electron is accelerated, it can absorb or radiate energy in the form of photons. Electrons, together with atomic nuclei made of protons and neutrons, make up atoms. However, electrons contribute less than 0.06% to an atom's total mass. The attractive Coulomb force between an electron and a proton causes electrons to be bound into atoms. The exchange or sharing of the electrons between two or more atoms is the main cause of chemical bonding.

According to theory, most electrons in the universe were created in the big bang, but they may also be created through beta decay of radioactive isotopes and in high-energy collisions, for instance when cosmic rays enter the atmosphere. Electrons may be destroyed through annihilation with positrons, and may be absorbed during nucleosynthesis in stars. Laboratory instruments are capable of containing and observing individual electrons as well as electron plasma, whereas dedicated telescopes can detect electron plasma in outer space. Electrons have many applications, including welding, cathode ray tubes, electron microscopes, radiation therapy, lasers and particle accelerators.

The ancient Greeks noticed that amber attracted small objects when rubbed with fur. Apart from lightning, this phenomenon is humanity's earliest recorded experience with electricity. In his 1600 treatise De Magnete, the English scientist William Gilbert coined the New Latin term electricus, to refer to this property of attracting small objects after being rubbed. Both electric and electricity are derived from the Latin lectrum (also the root of the alloy of the same name), which came from the Greek word  for amber.

In 1737 C. F. du Fay and Hawksbee independently discovered what they believed to be two kinds of frictional electricity; one generated from rubbing glass, the other from rubbing resin. From this, Du Fay theorized that electricity consists of two electrical fluids, "vitreous" and "resinous", that are separated by friction and that neutralize each other when combined. A decade later Benjamin Franklin proposed that electricity wa